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Efficient Reduced-Order System Identification
for Linear Systems with Multiple Inputs

Taehyoun Kim∗

Boeing Commercial Airplane Group, Seattle, Washington 98124-2207

A new, efficient discrete-time-domain system identification and model reduction method for a large-scaled
linear dynamic system with multiple inputs is presented. The method is based on a modification of the classical
eigensystem realization algorithm and a simultaneous injection of multiple inputs, so called the single-composite-
input method. Because the system response is sampled almost exclusively for the single representative input, this
technique can significantly reduce the model construction time as well as the amount of the sampled data. For
derivation of the new algorithm, the singular value decomposition is performed using output measurements that
are not necessarily attributed to pulse inputs. Application to general computational-fluid-dynamic systems and
formulation of reduced-order aeroelastic models are also presented. The efficiency and accuracy of the method
is demonstrated via a simple aeroelastic system, which is modeled by the three-dimensional vortex lattice and a
six-degrees-of-freedom plate-like structure.

Nomenclature
ABCD = system matrices
Ad1Ad2 = aeroelastic system matrices
AsBsCs = structural system matrices
b = reference length
K = covariance matrix defined in Eq. (42)
L = dimension of original system
M = number of time or frequency samples
mck = mass, damping, stiffness matrices
p = (R1 × 1) generalized coordinate vector
q = dynamic pressure (≡ 1

2 ρV 2)
R = number of chosen singular modes or the dimension

of realized model
R1 = number of chosen Karhunen–Loeve (KL) modes
t = real time
u = (Ni × 1) input or generalized structural

coordinate vector
V = air speed
X = frequency response of x
x = (L × 1) state or aerodynamic state vector
y = (No × 1) output vector or (Ni × 1) generalized

aerodynamic force vector
yi = pulse response due to i th input
�t = incremental time step
ρ = air density
τ = reduced time (≡ V t/b)
Φ = KL modal matrix
φi = KL mode
ω = frequency, rad/s
ωc = maximum cutoff frequency

Subscripts

i = input
o = output
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R = reduced
ref = reference
s = structure

Introduction

M OST modern dynamic models are constructed based on finite
spatial discretizations of continuous systems, resulting in a

considerable number of degrees of freedom in the model. Conse-
quently, for fast and efficient estimation of dynamic behavior as well
as optimization and closed-loop control design, a model reduction
must be accompanied. Essential requirements for reduced-order dy-
namic model are that the size of the system must not be too large,
the model must be robust and have a good fidelity, it must be in the
state-space time-domain formulation for implementation of active
control systems and nonlinear time analysis, and finally the reduc-
tion process itself must not be too expensive.

There have been many model reduction methods available, but
most of them require modifying the main frame of the computational
model and are prone to a long model construction time if the model
is subjected to many driving inputs. The latter in particular is true in
unsteady computational-fluid-dynamic (CFD) applications where
the moving solid boundary is often described by many structural
mode inputs. For example, a typical Boeing commercial airplane is
modeled by as many as 200 structural modes.

Recently, the eigensystem realization algorithm (ERA)1 was
used successfully in application of CFL3D for aeroelastic flutter
predictions.2,3 This method, which is usually used as a system iden-
tification technique, has a very attractive feature in that unlike model
reduction methods based on the Galerkin scheme4 there is no need
for online implementation of the algorithm. That is, it is a post-
processing tool that identifies and generates system matrices based
on the input and output data alone. Unfortunately, if the unsteady
CFD model is driven by more than one structural input the compu-
tation time required to obtain all of the pulse responses increases
proportional to the number of the inputs, making the ERA slow and
inefficient.

Kim5 and Kim and Bussoletti6 introduced the concept of the
single-composite-input (SCI) in applications of the Karhunen–
Loeve method to unsteady CFD models in the time and frequency
domains. The idea herein was that for a linear system one can ap-
ply the multiple inputs simultaneously and get all of the system
responses that are necessary for the model reduction. Because the
computational model needed to be executed only for the represen-
tative input, the model construction time was significantly reduced.
In this paper, the same approach is adopted for fast and efficient
model reduction of linear, finite-dimensional, discrete-time systems.
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To accommodate the SCI within the framework of ERA, it is nec-
essary to modify the original algorithm. In particular, the new for-
mulation does not rely on the system Markov parameters explicitly.
Instead, it performs the singular value decomposition (SVD) di-
rectly on the output measurements that are in general not attributed
to pulse inputs. Statistically independent random numbers are used
in lieu of the pulses for the multiple input signals. Naturally, the new
algorithm can also be used toward system identification provided
that all of the time measurements are available from experiments.
Application of the SCI/ERA to computational-fluid-dynamic sys-
tems and formulation of reduced-order aeroelastic models are also
presented.

For a demonstration of the proposed method, an unsteady vor-
tex lattice model in a subsonic, incompressible flow7 is studied.
Reduced-order aeroelastic models are also constructed by combin-
ing the reduced aerodynamic models and a plate-like wing that is
modeled by six vibrational mode shapes. It is shown that not only
the new method reduces the model construction time substantially,
but the accuracy of the resulting reduced-order models remains ex-
cellent.

The algorithms presented in this paper are a Boeing Intellectual
Property and under consideration for a U.S. patent.

Review of Pulse/ERA
In this section, the pulse/ERA (also known as ERA) is reviewed.

For simplicity, only its fundamental state-space realization theory,
which is attributed to Ho and Kalman,8 is discussed. For a gen-
eral description of the method, see Ref. 9. It is assumed that the
system under consideration can be described in the following finite-
dimensional, discrete-time form:

xn + 1 = Axn + Bun (1)

yn = Cxn + Dun (2)

where

x ≡ (L × 1) state vector (3)

u ≡ (Ni × 1) input vector (4)

y ≡ (No × 1) output vector (5)

The system matrices (A, B), (A, C) are controllable and ob-
servable. First, given M + 1 equally distributed time steps,
tn ≡ n�t (n = 0, 1, 2, . . . , M), for a single i th input vector the sys-
tem output is sampled subjected to the unit pulse

un
i = δn ≡

{
1 (n = 0)

0 (n = 1, 2, . . . , M)

}
(6)

Assuming zero initial condition, x0 ≡ x(0) = 0, one obtains

y0
i = di

y1
i = Cbi

y2
i = CAbi

y3
i = CA2bi

...
...

yM
i = CAM − 1bi (7)

where

bi ≡ ith column of B (8)

di ≡ ith column of D (9)

The constant matrices in the preceding sequence are known as the
Markov parameters.1 This step is repeated Ni times for all inputs
creating the sequence of pulse-response matrices:

Yn ≡ [
yn

1 yn
2 · · · yn

Ni

]
(n = 0, 1, 2, . . . , M) (10)

Next, based on the system Markov parameters define
No × [Ni × (M − 1)] Hankel matrices:

H0 ≡ [Y1 Y2 · · · YM − 1]

= C[I A A2 · · · AM − 2]B (11)

H1 ≡ [Y2 Y3 · · · YM ]

= C[A A2 · · · AM − 1]B (12)

SVD of H0 yields

H0 ≡ UΣVT

� [UR UD]

[
ΣR 0

0 0

][
VT

R

VT
D

]

= URΣ
1
2
R Σ

1
2
R VT

R (13)

where R ≡ rank(H0). Finally, a balanced realization of the system
under question is obtained by pseudo-inverting various submatrix
components as

D = Y0 (No × 1) (14)

C � URΣ
1
2
R (No × R) (15)

B � the first Ni columns of Σ
1
2
R VT

R (R × Ni ) (16)

A � Σ
− 1

2
R UT

RH1VRΣ
− 1

2
R (R × R) (17)

Because R � L , the preceding model represents a reduced-order
realization of the original system. Note that the realization is optimal
in that it is balanced between inputs and outputs. However, the
total number of samples taken is Ni × (M + 1), which increases
proportional to the number of inputs. Also, for an accurate system
identification H0 must have sufficient columns and rows, that is,
Ni × (M − 1) ≥ R and No ≥ R. Figure 1 shows a schematic of the
pulse/ERA procedure.

For a very large data set with many time steps and a large num-
ber of inputs, the ERA/data correlations (ERA/DC) method is pre-
ferred to compress the amount of data and reduce the computation
time required for the SVD of the Hankel matrix. See Ref. 1 for
details.

Fig. 1 Schematic of pulse/ERA process.
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SCI/ERA
The new method proceeds as follows. First, individual pulse re-

sponses are sampled for the first two time steps:

Y0 = [
y0

1 y0
2 · · · y0

Ni

]
(18)

Y1 = [
y1

1 y1
2 · · · y1

Ni

]
(19)

Next, construct the SCI as

bn
SCI ≡

Ni∑
i = 1

bi r
n
i (for states) (20)

dn
SCI ≡

Ni∑
i = 1

di r
n
i (for outputs) (21)

where

rn
i ≡ a sequence of arbitrary numbers (22)

To ensure independency of the inputs, one must use signals that
are as uncorrelated as possible. Subject to the SCI, we sample the
system response yn for n = 0, 1, 2, . . . , M , and get

yn
c0 ≡ Cxn

= yn −
Ni∑

i = 1

y0
i r n

i (23)

yn
c1 ≡ CAxn

= yn + 1 −
Ni∑

i = 1

y0
i r n + 1

i −
Ni∑

i = 1

y1
i r n

i (24)

Note that yn
c0, yn

c1 are measurements of the states in the reduced
dimension of C and C A. Similar to the Hankel matrices, define

Hc0 ≡ [
y1

c0 y2
c0 · · · yM − 1

c0

]
= C[x1 x2 · · · xM − 1] (25)

Hc1 ≡ [
y1

c1 y2
c1 · · · yM − 1

c1

]
= CA[x1 x2 · · · xM − 1] (26)

SVD of Hc0 yields

Hc0 ≡ UΣVT

� [UR UD]

[
ΣR 0

0 0

][
VT

R

VT
D

]

= URΣ
1
2
R Σ

1
2
R VT

R (27)

Once again, R ≡ rank(Hc0). The size of the preceding matrices is
No × (M − 1), Ni times smaller than the previous H0, H1. The new
realization is then

D = Y0 (28)

C � URΣ
1
2
R (29)

B � Σ
− 1

2
R UT

RY1 (30)

A � Σ
− 1

2
R UT

RHc1VRΣ
− 1

2
R (31)

Unlike the pulse/ERA, the SCI/ERA is optimal in that it is balanced
between states and outputs. As in the preceding method, for an accu-
rate realization Hc0 must have (M − 1) ≥ R and No ≥ R. However,
the total number of samples taken is only M + 1 + 2 × Ni , which
is much less than the previous Ni × (M + 1) when M samples of
pulse response are taken for each input. Figure 2 shows a schematic
of the SCI/ERA procedure.

Fig. 2 Schematic of SCI/ERA process.

Two comments regarding the new algorithm are in order. First and
foremost, compared with the pulse/ERA the new algorithm requires
a much smaller set of time measurements reducing significantly
both the computation time and the bulk of the output data. Second,
the new Hc0, Hc1 are constructed based on sampled system states
subjected to combined random inputs and as such they are not di-
rectly related to the Markov parameters. However, the scheme does
require the first two pulse responses y0

i and y1
i for each input in order

to estimate the state measurements based on Eqs. (23) and (24).
Although random signals have been recommended in this pa-

per, other types of signals can also be used for the SCI provided that
they are statistically independent. For example, Kim et al.10 consider
SCIs based on low-pass filtered, step, and pulse signals for applica-
tion of CFL3D for rapid flutter analysis. It is well known that for a
linear system any arbitrary response contains the fundamental char-
acteristics under the assumption that the system is controllable and
observable. It is this observation, along with the principle of super-
position, that the present system identification scheme is based on.

Alternative Scheme with Augmented Measurements
One of the requirements in the ERA methods is that for an accu-

rate model construction a sufficient number of output measurements
must be available, more than the number of linearly independent sin-
gular modes that are extractable from the Hankel matrices. Failure
to satisfy this requirement implies that one does not have enough
modes to approximate the system response. When this requirement
is not met, assuming again that (A, C) is observable we can expand
the data matrices by sampling additional responses as follows:

Hc01 ≡




C

CA

CA2

...

CAK




[x1 x2 · · · xM − 1]

=




y1
c0 y2

c0 · · · yM − 1
c0

y1
c1 y2

c1 · · · yM − 1
c1

· · · · · · · · · · · ·
y1

cK y2
cK · · · yM − 1

cK


 (32)

Hc11 ≡




C

CA

CA2

...

CAK




A[x1 x2 · · · xM − 1]

=




y1
c1 y2

c1 · · · yM − 1
c1

y1
c2 y2

c2 · · · yM − 1
c2

· · · · · · · · · · · ·
y1

cK + 1 y2
cK + 1 · · · yM − 1

cK + 1


 (33)
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where

yn
ck ≡ CAkxn

= yn + k −
Ni∑

i = 1

y0
i r n + k

i −
Ni∑

i = 1

y1
i r n + k − 1

i − · · · −
Ni∑

i = 1

yk
i r n

i

= yn + k −
k + 1∑
j = 1

Ni∑
i = 1

y j − 1
i r n + k + 1 − j

i (k = 0, 1, 2, . . . , K + 1)

(34)

SVD of the new Hc0 leads to

Hc01 ≡ U1Σ1VT
1

� [U1R U1D]

[
Σ1R 0

0 0

][
VT

1R

VT
1D

]

= U1RΣ
1
2
1RΣ

1
2
1RVT

1R (35)

from which we obtain

D = the first No rows of Y0
c (36)

C � the first No rows of U1RΣ
1
2
1R (37)

B � Σ
− 1

2
1R UT

1RY1
c (38)

A � Σ
− 1

2
1R UT

1RHc11V1RΣ
− 1

2
1R (39)

where

Yn
c ≡




yn
1 yn

2 · · · yn
Ni

yn + 1
1 yn + 1

2 · · · yn + 1
Ni

· · · · · · · · · · · ·
yn + K + 1

1 yn + K + 1
2 · · · yn + K + 1

Ni


 (n = 0, 1) (40)

The total number of measurements available is now (K + 1) × No.
The additional time samples are required for the pulse response as
well as for the response caused by the SCI. More specifically, if
K blocks of outputs are to be added pulse responses from each in-
put must be sampled at K additional time steps in addition the first
two time steps, t = 0 and �t . Also, the response from the SCI must
be sampled at K additional steps beyond the M th step. The total
number of samples to be taken is thus M + 1 + K + (2 + K ) × Ni .
K must be sufficiently large enough to satisfy the measurement re-
quirement, (K + 1) × No ≥ R. Needless to say, this scheme requires
extra computation time because of the additional time samples re-
quired in the data set.

Second Reduction Based on Frequency-Domain
Karhunen–Loeve/SCI Method

In applications of discrete-time computational models, there ex-
ist two conflicting requirements for the incremental time step �t .
For numerical convergence one has to adopt a sufficiently small
�t1. On the other hand, given the highest frequency of interest ωc

Nyquist criterion requires �t2 ≤ π/ωc. Usually, for practical pur-
poses �t2 � �t1. For instance, in a structural model that is coupled
with a CFD model for aeroelastic applications the highest mode usu-
ally has a much lower natural frequency than the highest frequency
content in the aerodynamic model. If the input signals used in the
ERA methods are sharp as in the random, step, or pulse inputs, the
SCI will excite all of the system dynamics, and hence this charac-
teristic will be carried over to the ERA-based reduced-order model.
As a result, the ERA reduced-order model (ROM) is prone to have a
large dimension to span the same high-frequency range as the orig-
inal full-order model (FOM), which suggests that there might be

room for further order reduction in the ROM. To perform a second-
order reduction, one can apply the frequency-domain Karhunen–
Loeve (FDKL) procedure11 to the ERA ROM obtained by matrices
(28–31) wherein frequency samples of the system within a given
frequency range (− ωc, ωc) are used to extract optimal modes, and
a new reduced-order model is constructed via the Galerkin’s ap-
proximation. According to the method, the optimal or so-called KL
modes φi are the eigenmodes of the covariance matrix K:

Kφi = λiφi (41)

where

Ki j ≡ X(ωi )X(ω j )
∗T (42)

ωi ≡ sampling frequencies

= [ω1 ω2 · · · ωM ] (43)

where ω1 = −ωc and ωM = ωc. To facilitate the SCI in the frequency
domain, Xi (ωi ) are sampled subjected to the same input described
by Eq. (20) and (21) but with the understanding that these random
numbers have been generated in the frequency domain.12 Another
feature of this FDKL/SCI method is that the number of the sampling
frequencies is optimized by beginning with just three sample points
at 0, ωc/2, ωc, and continuously updating the rank of the covrariance
matrix at each additional sample point. The sampling automatically
stops when the rank is converged.

Once the optimal modes are obtained, assume

x � Φp (44)

where

Φ ≡ [
φ1 φ2 · · · φR1

]
(45)

p ≡




p1

p2
...

pR1




(46)

R1 is set to be equal to the rank of the covariance matrix, which
is usually smaller than R. After inserting Eq. (44) into Eqs. (1)
and (2) with the ERA ROM matrices, premultiplying both sides by
ΦT yields a new reduced-order model as

pn + 1 = A1pn + B1un (47)

yn = C1pn + Dun (48)

where

A1 ≡ ΦT AΦ (49)

B1 ≡ ΦT B (50)

C1 ≡ CΦ (51)

The dimension of the new model is (R1 × R1).

Application to CFD Model
In this section, application of the proposed model reduc-

tion/system identification method to large-scaled CFD models is
discussed. Unlike the general system described by Eqs. (1) and (2),
an unsteady fluid dynamic system is driven by displacement and ve-
locity of its moving boundary surface simultaneously as they both
contribute to the normal downwash on the surface. If one considers a
statically nonlinear, dynamically linearized flowfield, the unsteady
fluid motion can be described as

xn + 1 = Axn + B0un + B1u̇n (52)

yn = q
(
Cxn + D0un + D1u̇n

)
(53)
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where

x ≡ (L × 1) fluid states (54)

u ≡ (Ni × 1) generalized displacements (55)

u̇ ≡ (Ni × 1) generalized velocities (56)

y ≡ (Ni × 1) generalized aerodynamic forces (57)

The preceding equations progress in nondimensional time,
τ ≡ V t/b, rather than in the real time t and (˙) is the first derivative
with respect to τ . In fact, the dependency of the normal downwash
on air speed disappears when the equations are discretized in τ , as in
Eqs. (52) and (53). The structural degrees of freedom ui are the gen-
eralized coordinates associated with structural modes. These modes
are used to describe the motion of the lifting surface. Two different
types of reduced-order fluid dynamic models can be obtained de-
pending on how the inputs are treated. If necessary, the FDKL/SCI
can be performed for an additional reduction.

Aerodynamic ROM with Displacement
and Velocity Inputs

One can treat un and u̇n separately as independent inputs. Thus,
for the pulse inputs

un
i = u̇n

i = δn ≡
{

1 (n = 0)

0 (n = 1, 2, . . . , M)

}
(58)

for i = 1, 2, . . . , Ni , we obtain the corresponding responses y0
i , y1

i
at the first two time steps. Let us define

Y0 = [
y0

1 y0
2 · · · y0

Ni
y0

Ni + 1 y0
Ni + 2 · · · y0

2Ni

]
(59)

Y1 = [
y1

1 y1
2 · · · y1

Ni
y1

Ni + 1 y1
Ni + 2 · · · y1

2Ni

]
(60)

where the first Ni samples are because of the pulses in un and the
next Ni ones are because of the pulses in u̇n . Next, we prepare the
following inputs:

bn
SCI ≡

Ni∑
i = 1

b0i r
n
i +

Ni∑
i = 1

b1i r
n
Ni + i (61)

dn
SCI ≡

Ni∑
i = 1

d0i r
n
i +

Ni∑
i = 1

d1i r
n
Ni + i (62)

Subject to the SCI, we sample the system response yn and get

yn
c0 ≡ yn −

2Ni∑
i = 1

y0
i r n

i (63)

yn
c1 ≡ yn + 1 −

2Ni∑
i = 1

y0
i r n + 1

i −
2Ni∑
i = 1

y1
i r n

i (64)

Define

Hc0 ≡ [
y1

c0 y2
c0 · · · yM − 1

c0

]
(65)

Hc1 ≡ [
y1

c1 y2
c1 · · · yM − 1

c1

]
(66)

where SVD of Hc0 yields

Hc0 ≡ UΣVT

� [UR UD]

[
ΣR 0

0 0

][
VT

R

VT
D

]

= URΣ
1
2
R Σ

1
2
R VT

R (67)

with R ≡ rank(Hc0). Hence, the reduced-order model is given by

D0 = the first Ni columns of Y0 (68)

D1 = the second Ni columns of Y0 (69)

C � URΣ
1
2
R (70)

B0 � the first Ni columns of Σ
− 1

2
R UT

RY1 (71)

B1 � the second Ni columns of Σ
− 1

2
R UT

RY1 (72)

A � Σ
− 1

2
R UT

RHc1VRΣ
− 1

2
R (73)

Aerodynamic ROM with Displacement Inputs
The second scheme is to use only the displacements as the system

inputs. This is possible by applying simultaneously the pulse and
double pulse inputs,

un
i = δn ≡

{
1 (n = 0)

0 (n = 1, 2, . . . , M)

}
(74)

u̇n
i = δ̇n ≡




1

�τ
(n = 0)

− 1

�τ
(n = 1)

0 (n = 2, 3, . . . , M)




(75)

and get the corresponding responses y0
di, y1

di at the first two time
steps:

Y0
d = [

y0
d1 y0

d2 · · · y0
dNi

]
(76)

Y1
d = [

y1
d1 y1

d2 · · · y1
dNi

]
(77)

For the SCI, we use

bn
SCI ≡

Ni∑
i = 1

b0i r
n
i +

Ni∑
i = 1

b1i ṙ
n
i (78)

dn
SCI ≡

Ni∑
i = 1

d0i r
n
i +

Ni∑
i = 1

d1i ṙ
n
i (79)

where ṙ n
i is the discrete-time derivative of rn

i . To be consistent with
the use of the double pulse defined in Eq. (75), ṙ n

i is obtained by
filtering rn

i via δ̇n
i , that is,

ṙ n
i ≡ conv

(
rk

i , δ̇k
i

)
(80)

which is equivalent to the backward difference equation,

ṙ n
i ≡ rn

i − rn − 1
i

�τ
(81)

Subject to the new SCI, we sample the system response yn and get

yn
dc0 ≡ yn −

Ni∑
i = 1

y0
dir

n
i (82)

yn
dc1 ≡ yn + 1 −

Ni∑
i = 1

y0
dir

n + 1
i −

Ni∑
i = 1

y1
dir

n
i (83)

Defining

Hdc0 ≡ [
y1

dc0 y2
dc0 · · · yM − 1

dc0

]
(84)

Hdc1 ≡ [
y1

dc1 y2
dc1 · · · yM − 1

dc1

]
(85)
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the SVD of Hdc0 yields

Hdc0 ≡ UΣVT

� [UR UD]

[
ΣR 0

0 0

][
VT

R

VT
D

]

= URΣ
1
2
R Σ

1
2
R VT

R (86)

with R ≡ rank(Hdc0). The new reduced-order model has only Ni

input channels and is in the form

xn + 1 = Axn + Bun (87)

yn = q(Cxn + Dun) (88)

where

D = Y0
d (89)

C � URΣ
1
2
R (90)

B � Σ
− 1

2
R UT

RY1
d (91)

A � Σ
− 1

2
R UT

RHdc1VRΣ
− 1

2
R (92)

Reduced-Order Aeroelastic Model
We illustrate how aeroelastic systems can be constructed using

the reduced-order aerodynamic models obtained in the preceding
section.

First, we note that structural model is normally described in the
real, continuous time

mü + cu̇ + ku = y (93)

(˙) and (¨), respectively, represent the first and the second deriva-
tives with respect to t . Hence, to construct aeroelastic model the
continuous-time equation (93) is discretized in time:

zn + 1 = Aszn + Bsyn (94)

un = Cszn (95)

where

z ≡
{

u

u̇

}
(96)

Cs ≡ [I 0] (97)

Note that given �τ and V the consistent incremental time step,
�t = �τb/V , must be used in the conversion to the discrete time.

Aeroelastic Model I
In this approach, we treat un, u̇n as independent inputs and apply

the bn
SCI, dn

SCI given by Eqs. (61) and (62) at a reference dynamic
pressure qref. The corresponding samples are taken and scaled by
1/qref. The aerodynamic ROM of the first kind described earlier
is then obtained by applying the SCI/ERA. An aeroelastic system
that is valid at all air speeds can be constructed by combining the
resulting aerodynamic ROM with the structural equations:

Xn + 1 = Ad1Xn (98)

where

X ≡
{

x

z

}
(99)

Ad1 ≡
[

A [B0 B1]

qBsC As + qBs[D0 D1]

]
(100)

Denoting the eigenvalues of system matrix (100) as λd1i , the aero-
elastic eigenvalues in the Laplace domain are obtained as

λc1i = log(λd1i )/�t (101)

For flutter instability, one must have Real(λc1i ) > 0 and ‖λd1i‖ > 1
for any i .

Aeroelastic Model II
One can also apply the bn

SCI, dn
SCI given by Eqs. (78) and (79) and

get the aerodynamic ROM of the second kind, Eqs. (87) and (88).
The new resulting reduced-order aeroelastic model is obtained as

Xn + 1 = Ad2Xn (102)

where

Ad2 ≡
[

A BCs

qBsC As + qBsDCs

]
(103)

Although q can change in Eq. (103), this model must be restricted to
the reference air speed Vref. It is well known that the total downwash
on the moving boundary depends on both the displacement u and
velocity u̇, and as such it is impossible to separate out and account
for the effect of V with the displacement channel alone. However,
this drawback is easily remedied by adjusting the incremental time
step according to �t = �τb/V and discretizing the structural model
based on the new �t . That is, if one leaves the V dependency in the
structure,

Ad2 ≡
[

A BCs

qBs(V )C As(V ) + qBs(V )DCs

]
(104)

then aeroelastic model II. becomes valid for all air speeds.

Results and Discussion
To demonstrate the proposed method, an unsteady vortex-lattice

aerodynamic model subjected to several structural mode inputs is
considered. It is mentioned that Refs. 13 and 14 also examined an
aerodynamic model based on the vortex-lattice method for system
identification by proper orthogonal decomposition (POD) and ERA
methods. Both types of reduced-order aeroelastic models are con-
structed using the methods described in the preceding section. For
simplicity of implementation, only the results from the SCI/ERA
method with a sufficient number of output measurements are pre-
sented here. Occasionally, the alternative scheme with augmented
output measurements was applied and indeed found to produce
reduced-order models of essentially the same qualities as those pre-
sented here.

Unsteady flowfield around a flat, rectangular wing in incompress-
ible, subsonic airflow is modeled by the vortex-lattice formulation
(Fig. 3). The wing is 3 in. wide and 12 in. long, has 10 and 20 vortex
elements in the chordwise and spanwise directions, respectively. The
free wake has 40 and 20 vortex elements in the streamwise and span-
wise directions, creating a total of 800 degrees of freedom.15 The

Fig. 3 Vortex-lattice grids for rectangular semispan.
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wing structure is modeled by using six vibrational (three bending and
three torsional) modes.16 The natural vibration frequencies of these
modes are 138.1, 649.6, 892.9, 2289.6, 2508.0, and 4160.2 rad/s, re-
spectively. No structural damping was introduced at this time. Thus,
the size of the full-order aeroelastic model is (812 × 812).

For the aeroelastic model I, the reference air density and speed
were set at 1.23 kg/m3, 80 m/s, respectively. The incremental time
at this reference speed is �t = dx/Vref = 9.525 × 10−5 s. For the
sampling of the vortex model, 480 extra outputs were extracted
in addition to the six generalized aerodynamic forces at 481 time
steps. Applying 12 sets of random signal inputs simultaneously,
six for un , six for u̇n , yielded a single set of sampled data. Twelve
pulse inputs were also applied individually at the first two time
steps to generate Y0 and Y1. Figure 4 shows three sequences of the
random numbers generated on MATLAB®. Of 481 time samples,
the SVD produced 413 linearly independent singular modes. This
number was determined by the rank of Hc0 matrix. Thus, the size
of the aerodynamic ROM became (413 × 413). The reduced-order
aerodynamic model was then coupled with the structural model to
create (425 × 425) aeroelastic model (ROM I.).

Fig. 4 Statistically independent random signals.

Fig. 5 (6 ×× 6) generalized aerodynamic forces at V = 80 m/s [ - FOM (800) - - ROM I-FDKL (129) . . . ROM II-FDKL (97)].

For aeroelastic model II, the reference air density and speed
were again set at 1.23 kg/m3 and 80 m/s. Six sets of random sig-
nals and six sets of discrete-time derivatives of the random sig-
nals were applied for un and u̇n using 481 time steps and the
486 output measurements. This yielded (329 × 329) aerodynamic
ROM, which when combined with the structural system, produced
(341 × 341) aeroelastic model (ROM II). ROM II is approximately
20 % smaller than ROM I as a result of using only the half of the input
channels.

Next, the dimensions of the reduced-order aerodynamic models
were further decreased using the FDKL/SCI method. As mentioned
earlier, the incremental time step embedded in both the FOM and
SCI/ERA ROM is too small to be effective for various aeroelastic
simulations, which usually involve a low-frequency range. Consid-
ering that the highest free vibration frequency of the structural modes
is 4160 rad/s, the sampling range in the FDKL method was restricted
to (−4500, 4500) rad/s. For the ROM I, of 174 frequency samples
within the range, 129 KL modes were selected based on the rank of
the covariance matrix K. Hence, the size of the new reduced-order
aerodynamic and aeroelastic models (ROM I-FDKL) became 129
and 141, respectively. Likewise, for the ROM II 97 KL modes of
130 frequency samples in the same frequency range were selected
yielding a new (109 × 109) aeroelastic model (ROM II-FDKL). For
computational efficiency, these reduced-order models are to be pre-
ferred over the ROM I and ROM II.

Figure 5 presents (6 × 6) generalized aerodynamic forces ob-
tained from the FOM, ROM I-FDKL, and ROM II-FDKL, in the
nondimensional time domain. It is seen that despite the cutoff fre-
quency range present in the latter two models they reproduce the
pulse aerodynamic responses of the original model very well.

Figures 6 and 7 show two different scales of the aeroelastic eigen-
values of the various models in the Laplace domain at V = 80 m/s. It
is seen that many eigenvalues of the reduced-order aeroelastic mod-
els match very well with those of the full model (Fig. 6). More specif-
ically, the 12 complex eigenvalues associated with six structural
modes agree very well between the FOM and ROMs, although the
higher structural modes (fifth and sixth) in the ROM II and ROM II-
FDKL are slightly mismatched (Fig. 7). All of the eigenvalues of
the ROM I-FDKL and ROM II-FDKL are approximately within the
specified bound, (− 4500, 4500) rad/s. Presented in Figs. 8 and 9
are time responses of the first two structural modes caused by an
initial condition in u̇1. It can be seen that the three sets of curves
are practically indistinguishable from each other. The next set of
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Fig. 6 Aeroelastic eigenvalues at V = 80 m/s.

Fig. 7 Aeroelastic eigenvalues at V = 80 m/s (close-up).

Fig. 8 Mode 1 aeroelastic response to initial condition (IC) in mode 1
at V = 80 m/s.

figures, Figs. 10–13 show aeroelastic results at V = 121.2 m/s. As
can be seen, the wing is on the verge of flutter at this speed. Note
how accurately the ROM I-FDKL is able to reproduce neutrally
stable, sinusoidal time responses (Figs. 12 and 13). However, the
ROM II-FDKL exhibits a noticeable but minor error in producing
the transient responses.

Finally, the model construction time is compared between
the pulse/ERA and SCI/ERA methods. To obtain accurate and

Fig. 9 Mode 2 aeroelastic response to IC in mode 1 at V = 80 m/s.

Fig. 10 Aeroelastic eigenvalues at V = 121.2 m/s.

Fig. 11 Aeroelastic eigenvalues at V = 121.2 m/s (close-up).
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Fig. 12 Mode 1 aeroelastic response to IC in mode 1 at V = 121.2 m/s.

Fig. 13 Mode 2 aeroelastic response to IC in mode 1 at V = 121.2 m/s.

consistent singular modes, Hc0, Hc1 matrices were kept as square
as possible by keeping the number of time samples approximately
equal to the total number of measurements, which is the sum of
the number of generalized aerodynamic forces and the number
of auxiliary measurements. The same numbers of time steps and
auxiliary outputs were used in both algorithms. Thus, in the first
case where only the first bending mode alone excited the flowfield,
M = 131, No = 131. In the second case where the first bending and
first torsional modes were included, M = 251, No = 252, and in the
third case where the first bending and torsional as well as the second
bending modes excited the aerodynamic field, M = 281, No = 283.
Four and five inputs were also used with M = 331, No = 334, and
M = 411, No = 415, respectively. Table 1 shows CPU seconds spent
in constructing ROM I on a Silicon Graphics, Inc. (SGI) machine.
Also presented in parenthesis are the dimensions of the correspond-
ing reduced-order models. Table 2 shows CPU seconds consumed
for ROM II on the SGI machine. Presented again in Fig. 14 is the
CPU seconds vs the number of inputs for ROM I and ROM II. Note
that these numbers represent total CPU seconds spent not only in
sampling the response but also processing the data in the subse-
quent ERA schemes. As seen from the tables and figure, the new
method clearly has an advantage over the pulse/ERA in reducing the
model construction time yielding saving factors of multiple num-
bers. Needless to say, as the number of inputs increases, so does the
saving. For a given number of inputs, both ERA methods generate

Table 1 Comparison of CPU time for ROM I

No. of inputs Pulse/ERA, s SCI/ERA, s

1 12.3 (92)a 6.7 (89)a

2 74.8 (180) 16.6 (182)
3 150.8 (221) 20.6 (226)
4 327.8 (297) 28.2 (298)
5 762.3 (336) 43.7 (340)
6 1525.5 (395) 63.2 (413)

aNumber in parentheses is the size of ROM.

Table 2 Comparison of CPU time for ROM II

No. of inputs Pulse/ERA, s SCI/ERA, s

1 6.3 (92)a 6.8 (89)a

2 32.8 (169) 17.00 (167)
3 65.9 (215) 21.0 (214)
4 130.1 (258) 27.6 (257)
5 279.6 (304) 44.1 (305)
6 540.4 (316) 61.4 (329)

aNumber in parentheses is the size of ROM.

Fig. 14 Model construction time of vortex lattice ERA ROMs vs num-
ber of inputs.

ROMs of very similar sizes. As expected, ROM II of the SCI/ERA
are as small as 80% of the corresponding ROM I. Despite the dif-
ferent input channels, both SCI/ERA ROM I and ROM II require
approximately the same CPU time, implying that in the SCI/ERA
the overall computation time is not very sensitive to the number of
inputs.

Conclusions
In this paper, an efficient time-domain system identification and

model reduction technique for linear dynamic systems that are sub-
jected to multiple right-hand-side inputs has been presented and
demonstrated. The method is a postprocessing procedure that does
not require modifying the original code and takes only input and
output data for the model construction. The new method is based on
the direct singular value decomposition of output measurements that
are not necessarily attributed to pulse inputs but caused by multiple
signal inputs applied simultaneously at the input channels. Com-
pared to the pulse/ERA, the SCI/ERA can significantly reduce the
model construction time and compress the amount of output data.
Therefore, it is very attractive for large-scaled dynamic systems
with multiple driving inputs such as CFD models wherein the mov-
ing boundary input is often described by many structural modes. For
practical applications a second model reduction of the ERA ROM is
desirable. For this purpose, the FDKL/SCI method is recommended
for its efficiency and accuracy. Although not presented in this pa-
per, for best performance of the new algorithm one could further
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optimize the number of time steps based on rank updating of the
data matrices, an algorithm that is adopted in the aforementioned
FDKL/SCI method.
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